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1 The Krein-Milman Theorem and The Markov-Kakutani
Fixed Point Theorem

Today’s lecture was given by a guest lecturer, Professor Dimitri Shlyakhtenko.

1.1 The Krein-Milman theorem

Definition 1.1. Let K ⊆ X be convex. Then a is an extreme point of K if a ∈ K and
if whenever a = α+ (1− α)y for some α ∈ [0, 1] and x, y ∈ K, then α = 0 or α = 1.

So extreme points cannot be on the interior of a line segment in K. The set of extreme
points is denoted as ext(K).

Example 1.1. Suppose K = {f ∈ L1([0, 1]) : ‖f‖1 ≤ 1}. What are the extreme points of

K? If ‖f‖1 = 1, then
∫ 1
0 |f(t)| dt = 1. The primitive F (T ) =

∫ T
0 |f(t)| dt is continuous, so

there is a T such that
∫ T
0 |f(T )| dt = 1/2. Now define

h(t) =

{
2f(T ) t ≤ T
0 otherwise,

g(t) =

{
0 t ≤ T
2f(t) otherwise.

Then ‖h‖2 = ‖g‖2 = 1, and f = 1
2h+ 1

2g. So there are no extreme points.

Theorem 1.1 (Krein-Milman). Let X be an LCS, and let K be a nonempty, compact,
convex subset. Then K = co(extK). In particular, extK 6= ∅.

Corollary 1.1. If B ⊆ X is a nonempty, convex subset such that ext(B) 6= ∅, then no
LCS structure on X makes B compact.

Corollary 1.2. If X is a Banach space and ext(X)1 = ∅, then X 6= Y ∗ for any Y .

Example 1.2. This shows that L1 is not the dual of anything.

Proposition 1.1. Let K ⊆ X be convex. The following are equivalent:
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1. a ∈ extK.

2. If a = 1
2(x1 + x2) with x1, x2 ∈ K, then x1 = x2.

3. If x1, . . . , xk ∈ K and a ∈ co{x1, . . . , xk}, then a = xj for some j.

4. K \ {a} is convex.

Here is the idea of the proof of the Krein-Milman theorem: Look for maximal (non-
trivial) relatively open convex subsets (and hope that these are the same as {K \ {a} : a ∈
extK}).

Proof. We want to use Zorn’s lemma. Let U = {U ⊆ K : U rel. open, convex, U 6= ∅, U 6=
K}. This is nonempty and ordered by inclusion. Assume that U0 ⊆ U is a chain. Let
U0 =

⋃
U∈U0 U ; this is open (as a union of open sets), and it is convex.1 U0 is nontrivial,

as well: if U0 = K, then U0 is an open cover for K, which means that K ⊆ U for some
U ∈ U0, This is a contradiction.

By Zorn’s lemma there exists a maximal element U ∈ U . Let x ∈ L and λ ∈ [0, 1].
Define Tx,λ : K → K by Tx,λ(y) = λy + (1 − λ)x. This is continuous and affine (i.e.
Tx,λ(

∑
j αjyj) =

∑
j αjT (yj) if αj ≥ 0 and

∑
j αj = 1).

We claim that if λ < 1 and x ∈ U , then Tx,λ(U) ⊆ U . Thus, U ⊆ T−1x,λ(U), which is

an open, convex set. If y ∈ U \ U , then Tx,λ(y) ∈ [x, y) ⊆ U . So if U ⊆ T−1x,λ(U), then

T−1x,λ(U) = K. Thus, Tx,λ(K) ⊆ U for all x ∈ U and λ ∈ [0, 1).
We claim that if V ⊆ K is open and convex, then V ∪ U = U or V ∪ U = K. This is

because V ∪U is open, and the conclusion above implies that V ∪U is convex. If V ∪U 6= K,
then V ∪ U ⊆ U by maximality.

We now claim that K \ U is one point. If a, b ∈ K \ U and a 6= b, then choose disjoint,
open, convex subsets Va, Vb ⊆ K with a ∈ Va, b ∈ Vb. Then Va ∪ U 6= U , so Va ∪ U = K.
However, this implies b ∈ Va ∩ Vb, which gives a contradiction.

We now claim that if V ⊆ X is open, convex, and extK ⊆ V , then K ⊆ V : Suppose
not, so there exists an open, convex V ⊆ X such that extK ⊆ V by V ∩K 6= K. Then
V ∩K ⊆ U , so there is a maximal U ∈ U such that V ∩K ⊆ U = K \ {a} and a ∈ ext(K).
Then a /∈ V , which is a contradiction.

To finish the proof: Let E = co(extK). If x∗ ∈ X∗, α ∈ R, and E ⊆ {x ∈ X :
Re 〈x, x∗〉 < α} = V , then K ⊆ V . Hahn-Banach says that E is the intersection of such
sets V . So E ⊇ K.

Here is another theorem. This is

Theorem 1.2. Let X be an LCS, and let X ⊆ K be compact, and convex. Assume that
F ⊆ K is such that K = co(F ). Then ext(K) ⊆ F .

1It also has a hilarious notation.
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1.2 The Markov-Kakutani fixed point theorem

Fixed point theorems allow us to show the existence of desired objects by expressing them
as a fixed point of some map(s).

Theorem 1.3 (Markov-Kakutani fixed point theorem). Let K ⊆ X be a nonempty, com-
pact, convex set. Let F be a family of affine maps K → K which is abelian (ST = TS for
all S, T ∈ F). Then there exists a fixed point x0 ∈ K such that T (x0) = x0 for all T ∈ F .

Proof. Let T ∈ F . Define T (n) = 1
n

∑n−1
k=0 T

k. Then T (n) is a again an affine map taking

K → K. If S, T ∈ F , then S(n), T (m) commute for all n,m. Let K = {T (n)(K) : T ∈ F , n ≥
1}, which is a collection of compact, convex sets. If T1, . . . , Tp ∈ F and n1, . . . , np ≥ 1,
then

T
(n1)
1 ◦ · · · ◦ T (np)

p (K) ⊆
p⋂
j=1

T
(nj)
j (K).

These are arbitrary elements of K, then K has the finite intersection property. So there
exists an x0 ∈

⋂
K′∈KK

′.
We claim that x0 is the desired fixed point. Take t ∈ F , and let n ≥ 1. Then

x0 ∈ T (n)(K), so x0 = T (n)(x) for some x. In particular,

x0 =
1

n
x+ T (x) + · · ·+ Tn−1(x)).

Applying T , we get

T (x0) =
1

n
(T (x) + · · ·+ Tn−1(x) + Tn(x)).

Subtracting this, we get

T (x0)− x0 =
1

n
(Tn(x)− x) ∈ 1

n
(K −K),

where K − K is compact. This is true for any n. If U is an open neighborhood of 0,
then there exists some n such that 1

n(K − K) ⊆ U . Then T (x0) − x0 ∈ U for all open
neighborhoods U of 0, so T (x0) = x0.
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